
Informatics (O000096)

Valid as from the academic year 2016-2017

Course
Specifications

Lecturers in academic year 2016-2017

De Neve, Wesley TW06 lecturer-in-charge

Course offerings and teaching methods in academic year 2016-2017

A (year) seminar: practical PC room classes 60.0 h

lecture 60.0 h

Offered in the following programmes in 2016-2017 crdts offering

Bachelor of Science in Food Technology 10 A
Joint Section Bachelor of Science in Environmental Technology,
Food Technology and Molecular Biotechnology

10 A

Bachelor of Science in Environmental Technology 10 A
Bachelor of Science in Molecular Biotechnology 10 A

English

Computational thinking, Command line, Creative problem solving, Linux, Programming,
Python, Scientific problem solving, Scripting

Scientists and engineers are often confronted with time-consuming and repetitive tasks
when making use of computers to process and analyze data. These tasks may include
collecting data from websites, converting files from one format into another, and
analyzing, summarizing, and visualizing the data obtained. The exponential flow of
newly incoming data forces present-day scientists and engineers to automate these
tasks, so to be able to speed up their daily job routines.

This course teaches you how to translate time-consuming and repetitive tasks in such a
way that they can be performed automatically by a computer. To that end, the
necessary skills for computer-based creative problem solving will be acquired (1) by
learning to work and think in Python and (2) by learning to work with the Unix command
line. The programming problems that need to be solved are taken from different
scientific disciplines, including biology, chemistry, physics, computer science, and
mathematics.

In order to take this course, students do not need to have prior programming
experience. However, in order to successfully complete this course, students need to
have an aptitude for mathematics and logic. In addition, given that this course follows a
'learning by doing' and a 'learning from mistakes' approach, students need to have a
willingness to solve programming problems on a weekly basis.

Programming is the process of designing, writing, testing, debugging and maintaining
the source code of computer programs. This requires knowledge of the syntax and
semantics of a programming language and the skills to write programs in that language.
Additionally, and maybe most importantly, when writing computer programs, one must
learn how to think as a programmer. This process of computational thinking, or in other
words, learning the skill of problem solving by programming, is a common theme
throughout the whole course.

Contact hrsStudy time 300 hCredits 10.0

Teaching languages

Keywords

Position of the course

Contents

(nominal values; actual values may depend on programme)

120.0 h

Course size

1(Approved)

Access to this course unit via a credit contract is determined after successful competences
assessment

This course unit cannot be taken via an exam contract

Lecture, seminar: practical PC room classes

In this course, students learn how to make use of the Python programming language to
solve a plethora of scientific problems. To that end, attention is paid to:
• basic components: instructions, variables, data types, and operators;
• control structures: conditional statements, repetitive statements, and functions;
• data structures: strings, lists, tuples, dictionaries, sets, modules, and files;
• object-oriented programming: objects, classes, attributes, methods, encapsulation,
• polymorphism, and inheritance; and
• databases and SQL.
Furthermore, in this course, students learn how to make use of Unix-based tools to
automate repetitive or complex tasks. To that end, attention is paid to:
• principles of Unix-based operating systems;
• interactive command line usage; and
• shell scripting and regular expressions.

An aptitude for mathematics and logic.
An interest in solving scientific problems.
Prior programming skills are not required.
Some basic computer knowledge is advantageous.

The student will be able to translate a task described in natural language into a
program written in Python, and s/he will subsequently be able to execute this program
by means of a computer, generating the required results.
The student will be able to test and debug a program (module) and make the right
choices between different alternatives when implementing a program, taking into
account performance (efficiency), coding style, and correctness.
The student will have a working knowledge about the basic principles of object-oriented
programming.
The students will be able to automate repetitive or complex tasks using the Unix
command line, shell scripting, and regular expressions.
The student will be able to transfer the computational concepts learned to other
computational environments (e.g., environments making use of MATLAB or R).

Handbook: The Practice of Computing using Python, William Punch, Addison Wesley,
ISBN-13: 978-0136110675.
Handbook: Mark G. Sobell, A Practical Guide to Linux: Commands, Editors, and Shell
Programming, Second Edition. ISBN-13: 978-0133085044.
Slides shown during the lectures will be made available on Minerva, together with
additional learning materials (e.g., background information and links to relevant
websites). Digital tools like Eclipse for writing and debugging Python source code, the
Online Python Tutor for visualizing code execution, and an online platform for
automated verification of the correctness of solutions written in Python.
Students are required to have a personal laptop for use in this course.

Mark Lutz (2009). Learning Python: Powerful Object-Oriented Programming (4th
edition). O'Reilly Media, ISBN-13: 978-0596158064.
Mark Pilgrim (2009). Dive into Python. CreateSpace, ISBN-13: 978-1441413024. (free
download @ http://diveintopython.org).
Hans Peter Langtangen (2009). A Primer on Scientific Programming with Python.
Springer, ISBN-13: 978-3642024740.
Tony Gaddis (2009). Starting Out with Python. Pearson Education - Addison Wesley,
ISBN-13: 978-0321549419.
Michael H. Goldwasser (2007). Object-Oriented Programming in Python. Prentice Hall,
ISBN-13: 978-0136150312.
Jason Kinser (2008). Python for Bioinformatics. Jones & Bartlett Publishers, ISBN-13:
978-0763751869.
Sebastian Bassi (2009). Python for Bioinformatics. Chapman & Hall, ISBN-13: 978-
1584889298.

Initial competences

Conditions for credit contract

Final competences

Conditions for exam contract

Teaching methods

Learning materials and price

References

2(Approved)

end-of-term evaluation and continuous assessment

examination during the second examination period is possible in modified form

Assignment

Mark G. Sobell (2012). A Practical Guide to Linux: Commands, Editors, and Shell
Programming. Second Edition. Prentice Hall, ISBN-13: 978-0133085044.
William Punch and Richard Enbody (2012). The Practice of Computing using Python.
Second Edition. Addison Wesley, ISBN-13: 978-0136110675.
Steven Haddock and Casey Dunn (2010). Practical Computing for Biologists. First
Edition. Sinauer Associates, Inc, ISBN-13: 978-0878933914.
Ashley Shade, Tracy K. Teal (2015). Computing Workflows for Biologists: A Roadmap.
PLOS Biology.
Pavel A. Pevzner (2004). Educating Biologists in the 21st Century: Bioinformatics
Scientists versus Bioinformatics Technicians. Bioinformatics, Vol.20, No.14, pages
2159–2161.
Alejandra J. Magana, Manaz Taleyarkhan, Daniela Rivera Alvarado, Michael Kane,
John Springer, and Kari Clase (2014). A Survey of Scholarly Literature Describing the
Field of Bioinformatics Education and Bioinformatics Educational Research. CBE—Life
Sciences Education, Vol. 13, pages 607–623.

Open book examination, skills test

Periodic evaluation: open book examination, skills test - 75%
Non-periodic evaluation: assignment - 25%

During the first examination period, the periodic evaluation accounts for 75% of the final
score and the non-periodic evaluation (hands-on sessions) accounts for 25% of the
final score. To qualify for passing, both the score of the periodic and the non-periodic
evaluation should be at least equal to 8/20. If that is not the case, the total course score
will be subject to an upper limit of 7/20.
The periodic evaluation consists of a partial exam at the end of the first semester and a
final exam at the end of the second semester. If the score of the partial exam at the end
of the first semester is higher than or equal to 10/20, then the final exam at the end of
the second semester only covers the course content of the second semester. In
addition, the score of the periodic evaluation is equal to the average of the score of the
partial exam at the end of the first semester and the score of the final exam at the end
of the second semester. If the score of the partial exam at the end of the first semester
is lower than 10/20, then the final exam at the end of the second semester covers the
course content of both the first and the second semester. In addition, the score of the
periodic evaluation is equal to the score of the final exam at the end of the second
semester.
Students who passed the partial exam at the end of the first semester are allowed to
retake the exam questions related to the course content of the first semester during the
final exam at the end of the second semester. The computation of the final score will
then make use of the last of the two scores obtained for the course content of the first
semester.
During the second examination period, the non-periodic evaluation cannot be retaken.
Therefore, the final score for the second examination period is computed twice. The
first computation takes into account both the score of the non-periodic evaluation (that
is, the score obtained during the first examination period, on a maximum of 5) and the
score of the second examination period (on a maximum of 15). The second
computation only takes into account the score of the second examination period (on a
maximum of 20). The final score for the second examination period is then equal to the
maximum of the above two computations.

Course content-related study coaching

Evaluation methods

Examination methods in case of periodic evaluation during the first examination period

Examination methods in case of periodic evaluation during the second examination period

Examination methods in case of permanent evaluation

Extra information on the examination methods

Possibilities of retake in case of permanent evaluation

Calculation of the examination mark

3(Approved)

